

COMPARISON OF GLISTENING FORMATION AND WHITENING OF HYDROPHOBIC ACRYLIC IOLS

P. Rozot*, M. Bouquet**, C.Chong**, Y. Guldenfels*** ESCRS, Oct 10th, 2017, Lisbon

^{*} Clinique Juge, Marseille, ** Acrylian Ltd, Strasbourg, ***Rhena Clinique, Strasbourg FRANCE

FINANCIAL DISCLOSURE

- > P. Rozot
 - travel funded
 - consultant for Alcon, Carl Zeiss, Thea
 - > no interest in the main subject of this presentation
- M. Bouquey, C.Chong:
 - Acrylian employees
- >Y. Guldenfels
 - consultant for Carl Zeiss
 - > no interest in the main subject of this presentation

PURPOSE

I. To compare the in vitro occurence of glistening formation (number & size) and whitening of several hydrophobic acrylic IOLs

Glistening: microvacuoles

IOL usually remains transparent

<=> rain

Whitening: nanovacuoles

Smaller vacuoles, higher diffusion: IOL seems whitish

MATERIAL & METHODS

I. GLISTENING MEASUREMENT METHOD

The glistening is measured by counting microvacuoles in a hydrated lens/material from a picture taken with a optical microscope at x100 magnification. Microvacuoles diameter is also measured.

Glistening measurement method¹

Method:

- IOL are aged in a physiological solution at 45°C for 24 hours.
- Then iol are slowly **cooled down to 35°C**. Their evolution is observed with a **microscope (x100)** for 6 hours

Glistening values given in this study are the number of micro-vacuoles after 2,5 hours after iols are placed to cool down.

. GLISTENING MEASUREMENT METHOD

- ImageJ sofware is used to determine the number and the diameter of microvacuole (=MV).
 - □ The analysis is made on the most representative picture, which is the one with the most homogeneous and the highest MV's density
 - Over the five pictures of the sample, the most representative is usually the one of sample's center
- Determination of MV's diameter
 - ☐ The scale on Image J is measured and set using a sight
 - Once the scale set, ImageJ provides MV's diameter in µm
- MV's counting
 - MV are manually counted

II. WHITENING MEASUREMENT METHOD

- What's the whitening?
 - The material (lens or button) immerged in water becomes lightly opalescent to white

This phenomena can be observed without a microscope, by lighting the

material from its side

- □ Whitening is due to the **diffusion** of light² through « **nano-vacuoles** »
 - > The intensity of diffused light is proportionnal to $\frac{1}{vacuoles \cdot diameter^6}$
 - > This intensity can be measured by a RGB histogram

III. WHITENING

- Whitening analysis of aged buttons
 - Buttons are aged in 35°C pure water over 2000 hours
 - A picture is taken and analyzed with ImageJ each week to study buttons's aging

II. WHITENING

Whitening measurement with ImageJ software

List Copy Log Live RGB

II. WHITENING

Example of whitening measurement with ImageJ software

RESULTS

STUDIED IOLS FOR GLISTENING

GLISTENING RESULTS

II. COMMERCIAL LENSES AND ACRYGEM 1 & 2 MATERIALS

Acrygem 2 (1mm-button)

0 MV/mm²

IOL	Diopter	white at t=0	white at t=119j	Δ (whitening)
Vivinex	+25.5D	4.43	6.53	2.10
Acrysof	+20.0D	7.39	15.42	8.03
EyeceeOne	+21.5D	10.02	27.73	17.71
Tecnis	+22.5D	8.02	29.08	21.06
EnVista	+20.0D	17.86	45.73	27.87
Micropure	-	65.85	125.70	59.85
EOS	+26.5D	9.06	94.01	84.95
Focusforce	+21.5D	10.64	217.29	206.65

At 119 days

- Group 1 : no significant whitening :
 o Vivinex (Hoya) et Acrysof (Alcon)
- Group 2: mild whitening:
 o Eyeceeone (Nidek), Tecnis (Abbott) et EnVista (Santen)
- Groupe 3 : moderato whitening:
 o Micropure (PhysIOL) et EOS (Cristalens)
- Groupe 4: high whitening:
 o Focusforce (Anadolu Tip Teknolojileri)

CONCLUSION

- Hydrophobic acrylic IOLs
 - less PCO than hydrophilic
 - inclusion of small particles of water favored by temperature changes, especially from warm to cold
 - > evolutivity ?
 - clinical significance discussed
 - glistening: little effect
 - whitening: more light diffusion (scotopic)
- Hydrophilic: no hydric particles, but sometimes intra optic or surface calcifications
- go on looking for the best material!